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Generative Adversarial Networks for Real-robot Missions

Student: Pin-Wei Chen Advisor: Dr. Hsueh-Cheng Wang

Institute of Electrical Control Engineering
National Chiao Tung University

Abstract

Leveraging highly developed deep learning and artificial intelligence, computer vision tech-
nology and applications reached new levels. Computers can now not only perform image pro-
cessing, classification, and object detection, but also can ~ create” images similarly to humans,
due to generative model developments. In particular, the generative adversarial network (GAN)
provides many architectures and applications, such as image style transfer, human face genera-
tion, image generation from text, etc. However, there has been little study regarding applying
GAN to real-robot missions to replace and improve other approaches. Therefore, this work
proposed two GANs: FCN-Pix2Pix and SSIM-CycleGAN, based on Pix2Pix and CycleGAN
respectively, and implemented them for two real-robot missions which still face some chal-
lenges with modern solutions: semantic segmentation and virtual dataset from sim to real. The
proposed approaches were also compared with current state-of-the-art approaches, verifying

significant advantages for the proposed methods.
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Chapter 1

Introduction

1.1 Motivations and Challenges

Computer vision has advance greatly, leveraging machine learning, deep learning, and ar-
tificial intelligence developments to be applied in many fields. Consequently, computer vision
has becomes much faster with better prediction accuracy compared with traditional slow and
relatively poor accuracy image processing, achieving comparability with human performance.

The development of generative models has allowed computers to not only realize complex
image processing, but also to create images directly, behaving similarly to humans. The gen-
erative adversarial network (GAN) is currently the most popular network, being widely used
for many applications, such as image style transfer, generating human facial images, face ag-
ing, etc. The full list of successful applications is impressive, but most are computer vision
aspects, rather than real-robot applications. Therefore, I propose to apply powerful generative
adversarial network architecture for robotics in real-robot missions.

Studying two recent real-robot missions, DARPA Subterranean (SubT) Challenge [4] and
the robot arm pick-and-place [5] by NCTU ARG Lab [6], I found some disadvantages that could
be improved by GAN. Therefore, I propose to use GAN to address two essential issues for real-

robot missions: semantic segmentation and virtual dataset from simulation to real.
+ Semantic Segmentation

The DARPA SubT Challenge [4] seeks novel approaches for autonomous rapidly mapping,
navigation, and artifact searching in unknown underground environments during time-sensitive
combat operations. The artifact search requires the robot to automatically detect artifacts and
obtain their precise position. Consequently, I need to build a robust and powerful image semantic

segmentation solution for this task.



Semantic segmentation is an important but difficult robot vision technology to give every
pixel a predicted class, rather than only providing two-dimensional (2D) bounding box predic-
tions for an image. However, common semantic segmentation networks generate predictions
with considerable noise and checkerboard artifacts. I propose to use GAN to solve these prob-

lems.

» Virtual Dataset from Simulation to Real

Many studies have tried to fully automate factory logistics and warehousing, enhancing pro-
cess speed and reducing labor costs. The NCTU ARG Lab [6] considered warehouse robotic
pick-and-place systems with the aim to automatically pick-and-place [5] all products. Their pro-
posed system detected object location and assigned a category, and then let the robot arm grasp
and move it to the appropriate shelf following appropriate pose.

Object detection is mostly achieved by data-driven deep learning approaches, which requires
considerable labeled data for training. The required dataset sizes can raise concerning money
and time costs during data collection. This problem has begun to be addressed by generating
data in appropriate virtual environments, providing tens of thousands of data in very short time,
covering many different scenes. However, deep neural network models trained with virtual data
generally provide poor performance for real environments. Therefore, I propose to build a GAN
system to convert the virtual dataset from simulation to real environment, such that an object

detection deep neural network trained with the new dataset can be used in real environments.

1.2 Contributions

This work aims to develop GAN for robotics applications. I propose GAN based methods to
solve semantic segmentation and virtual dataset from simulation to real problems. The proposed
approaches will be compared with current state-of- the-art methods to verify robustness and

capability.

* FCN-Pix2Pix



The proposed FCN-Pix2Pix semantic segmentation system was based on Pix2Pix GAN [1] to
improve accuracy while reducing noise and checkerboard artifacts for image pixel-wise classi-

fication.

* SSIM-CycleGAN

The proposed SSIM-CycleGAN system generated a Sim2Real dataset from a virtual dataset
using CycleGAN [2] to create a suitable dataset such that an object detection network trained

on it could be used in real environments.

1.3 Thesis Architecture

Section 1 discusses the underlying motivations, challenges, and contributions of this paper,
and then Section 2 reviews relevant previous reported studies, introducing GAN [7], Pix2Pix [1],
and CycleGAN [2] networks that are used subsequently. Sections 3 and 4 discuss the experi-
ments for semantic segmentation and virtual dataset from simulation to real, respectively. Fi-
nally, Section 5 summarizes and concludes the paper, and discusses potential future research

directions.



Chapter 2

Literature Review

2.1 Generative Adversarial Network

Generative adversarial networks (GANSs) [7] generally comprise a generator and discrimi-
nator, both of which are neural networks. The core GAN concept is to estimate the generator,
(G, by the discriminator, D, using an adversarial process. We simultaneously train G and D,
using GG to capture the data distribution, and D to estimating the probability a given sample
comes from the training data X or the generator G. We can consider the GAN architecture as
a minimax two-player game, where G is trying fool D that G(z) is same as X, and D is trying
show G/(z) and X are different.

Training the GAN model can be divided into two steps. First, we maximize the probability
of D making a mistake for G, i.e., we train G to minimize log(1-D(G(z))), and D to maximize

log(1-D(G(z))) and log(D(x)). Therefore, the goal of the GAN is to optimize 2.1.

mGin mgx V(D,G) = B paata(@) [logD(x)] + Esp. () [log(1 — D(G(2)))] (2.1)

GAN is one of the most powerful constructs from machine learning in the last decade, with
many extended applications and modifications being actively developed, including different
generators and discriminators as well as the underlying adversarial architecture. For example,
[8] demonstrated StackGAN, using a series of GANs to generate realistic images from textual
descriptions; [9] used GANSs to generate new images of human models in different poses, and
[10] employed GANs to generate facial images at different ages. The current study modified
two GAN architectures, Pix2Pix [1] and CycleGAN [2] for semantic segmentation and virtual
dataset from simulation to real, respectively. The underlying GAN systems are discussed in the

following sections.



2.2 Pix2Pix

Pix2Pix [1] provides image-to-image translation with conditional adversarial networks, com-
prising a generator, (&, and discriminator, ). The Pix2Pix goal provide the translation from
source to target images, which are paired. For training, G takes the source image as conditional
input and provides a generated image. D then learns how to tell whether a given image is gen-
erated image or the original target. Consequently G learns how to generated images that can
fool D they are target images. The original Pix2Pix study [1] demonstrated translation between
object edges to realistic images, and also translation between labeled masks to the actual street
scene. Therefore, I modified Pix2Pix (FCN-Pix2Pix) to translate an image into a heatmap for

semantic segmentation.

2.3 CycleGAN

CycleGAN [2] is an unpaired image-to-image translation using cycle consistent adversarial
networks. CycleGAN comprises four models: G ap, Gpa, D4 and Dg. G 45 and G4 are gen-
erators, where G 4 g takes an image from domain A as input, and tries to generate a fake domain
B image; and G'g4 generates a fake domain A image from domain B. D 4 and Dg discriminate
whether an image is from domain A or B, respectively. The CycleGAN goal is not only to
transform an image from domain A to B but also from domain B to A, hence regularizing the
generator. Since CycleGAN is an unpaired image-to-image network, we can train the network to
transforming from domain A to B and domain B to A without requiring paired images between
domains A and B. This is the key point for choosing CycleGAN as the underlying architecture

for the proposed SSIM-CycleGAN system to convert a virtual dataset from simulation to real.



Chapter 3

Semantic Segmentation

3.1 Introduction

Figure 3.1: Subterranean (top left) image with artifacts, (lower left) artifact object detection by
SSD [3], and (right) after semantic segmentation by FCN-Pix2Pix

I need to build a semantic segmentation model to find precise target artifact positions for
the DARPA SubT Challenge artifact search. In this mission, I have to get a precise position of
the artifact, and the semantic segmentation enables us to align the prediction mask to the depth
image from the RGB-D camera. Therefore, we can use this information to compute the average
depth of the artifact, and then get a more precise position compared with the bounding box
result. This is because the bounding box result cannot tell us which pixel in the bounding box
we should take into account when computing the depth, so I choose the semantic segmentation
approach in the artifact search mission in DARPA SubT Challenge.

Predictions generated by most semantic segmentation deep neural networks include consid-

erable noise and checkerboard artifacts [11] due to the unknown severe subterranecan environ-



ments with varied lighting conditions, mist, dust, and fog, which cause many problems for robot
vision to complete artifact searching.

This section discusses the proposed approach and shows achieves better performance than
several state-of-the-art approaches as well as artifact searching from the University of Pennsyl-

vania [12], who participated in the 2019 SubT Challenge.

3.2 Related Work

3.2.1 Object Detection

Modern vision based missions mostly use data-driven deep learning approaches, where deep
neural network models are trained to provide predictions using large training datasets. Object
detection has already been achieved many times using deep learning networks, such as the single
shot multi-box detector (SSD) [3], YOLO [13], YOLO-V3 [14], R-CNN [15], fast-RCNN [16],
and faster-RCNN [17]. These object detection networks all take an image as input and output

2D bounding boxes with predicted categories.

3.2.2 Semantic Segmentation

In contrast with object detection networks, which only provide 2D bounding boxes with
categories, semantic segmentation networks give each input image pixel a predicted output class,
making the DARPA SubT Challenge artifact search a better result for detecting the artifact poses.
The fully convolutional network (FCN) [18] comprises a series of fully convolutional layers,
including convolution and deconvolution layers. FCNs take arbitrary sized input images, passes
them through the convolution layer, and then generates corresponding sized output with pixel-
wise predicted labels for the input image. Most FCNs use VGG16 [19] as their encoder, which
won the 2014 Large Scale Visual Recognition Challenge (ILSVRC2014) [20], hence provide
excellent performance for pixel-wise image classification tasks. Therefore, I adopted an FCN
based GAN approach to build the semantic segmentation network.

U-Net [21] has the same underlying architecture as FCN, but crops and concatenates convo-

lution (down-sampling) layers to deconvolution (up-sampling) layers to extract more features



from different aspects. This approach makes U-Net architecture look U-shaped, which is the
basis for “U-Net” . U-Net is mostly applied in GANs architecture, however, it does not use
VGG [19] for feature extraction, because U-Net is mainly for biomedical image segmentation.

Therefore, it is not considered in the GAN approach for semantic segmentation task in this work.

3.3 Method

3.3.1 Network Architectures

I chose FCN as the network backbone due to its performance for pixel-wise image classi-
fication. In principle an FCN can immediately solve semantic segmentation problems, but in
severe environments, FCN predictions contains significant checkerboard artifacts [22], [11]
and noise. Consequently, I applied FCN to GAN architecture which is based on the Pix2Pix [1].
The GAN discriminator enables the network to consider the whole image when generating the
mask prediction. Thus, network prediction can reduce checkerboard artifacts and noise, and

consequently produce more precise predictions.

Generator Discriminator

Deconv layers

A

st S //,’/
A/ e

480
VGG16 Conv_1~ Conv_5

32|/

Figure 3.2: GAN components (left) generator, an FCN [18] model, and (right) discriminator, in
this case a patch discriminator.

Previous Pix2Pix [1] studies uses U-Net as the generator, producing a one channel grayscale
or three channel RGB image. However, since the current problem is a classification task, [
used FCN as the generator Fig. 3.2, producing an n-channel feature map (heatmap) where n

represents the number of classification categories.



The FCN generator architecture can be divided down and up-sampling components. An in-
put RGB image (480x640x3) is first down-sampled through the VGG16 network ™ top 5 convo-
lution layers. The output tensors are then passed through the up-sampling network, comprising
deconvolution (transposed convolution) layers, and the tensor is up-sampled step by step until
the height and width are the same as the input image. Final FCN output is a five channel heatmap
(480x640x5), 1.e., every pixel has 5 values representing the probability of being the correspond-
ing class: extinguisher, backpack, drill, survivor, and background. The predicted mask is set
to be the class index with maximum probability, hence the final predicted mask has dimension
480%640x1.

Following Pix2Pix [1], I use the convolutional PatchGAN classifier as the discriminator,
comprising six convolution and max-pooling layers. Input 1s a 480%640%8 tensor, the concate-
nation of the RGB image (480%640x3) and generated heatmap (480x640x5). Typical discrimi-
nators pass the input tensor through the convolution layers and classify at the last layer, providing
aone dimensional 1 or 0 as the final result. Although, the PatchGAN employed in this work also
passes the input tensor through the convolution layers, it produces 30x40 = 1200 patches in the
last layer, where each patch is classified as 1 or 0. Thus, the discriminator produces many (true
or false) classification results, rather than only a single result, greatly improving discriminator

supervision capability.

3.3.2 Training

I built the FCN-Pix2Pix using the defined FCN generator and PatchGAN discriminator, with
system architecture as shown in Fig. 3.3. The upper figure shows that RGB images pass through
the generator and generate heatmaps. Then the heatmap is concatenated with the corresponding
RGB image.

The discriminator learns how to distinguish generated images from ground truth labeled
masks over many iterations, which simultaneously forces the generator to generate better pre-

diction masks.
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Figure 3.3: Proposed FCN-Pix2Pix architecture: (upper) generator and (lower) discriminator
training procedures. Note that the upper and lower discriminators are the same. The concatena-
tion of the RGB image (480%640%3) and generated heatmap is passed through the discriminator.
This step enables the generator learning to confuse the discriminator (i.e., outputting True for
a generated image. However, the discriminator simultaneously learns to classify generated and
original images, the crux of the “adversarial” step. (lower) discriminator input, i.e., concate-
nated RGB image and corresponding ground truth labeled mask, which the discriminator learns
to classify as True.

3.4 Experiments

3.4.1 PST900 Dataset Introduction

The University of Pennsylvania [12] also participated in the DARPA SubT challenge and
collected the SubT data into the PST900 dataset. Therefore, I used the PST900 dataset as the
benchmark for this experiment. The dataset comprised 894 synchronized and calibrated RGB
and thermal image pairs with pixel-level human annotations across four distinct classes: drill,

extinguisher, backpack, survivor, and background.
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3.4.2 Experiment Design

This experiment used RGB images from the PST900 training dataset to train several state-of-
the-art semantic segmentation models, including ERFNet [23], MAVNet [24], UNet [21], Fast-
SCNN [25], PST-segnet [12], FCN [18], and the proposed FCN-Pix2Pix. The trained models
were then evaluated on the PST900 testing dataset using evaluation metrics image-level mask
intersection over union (IoU), i.e., union overlap area for each class (loU = %)5 and

mean [oU (mloU) over all classes.

3.4.3 Results and Discussions

- ?
(b)

(©) (d)

Figure 3.4: Normal network prediction outcomes for two images: (a) input RGB and (b) labelled
images from PST900 dataset [12], (¢) FCN predicted mask, (d) FCN-Pix2Pix predicted mask.

Figure 3.4 shows that FCN and FCN-Pix2Pix predict well for the PST900 testing dataset, but
Figure 3.5 shows there are many differences between them. FCN predicted masks have consider-
able noise and checkerboard artifacts [11], which are typical disadvantageous for up-sampling
(deconvolutional layers), whereas FCN-Pix2Pix prediction considerably reduce checkerboard
artifacts and noise.

Implementing the semantic segmentation model in GAN architecture provides several ben-
efits due to the discriminator, because typical semantic segmentation models only reduce L1
or L2 loss between predicted and labeled masks. Prediction results with blurring, noise, and

checkerboard artifacts are difficult for FCN to detect since it can only calculate L1 or L2 loss



pixel by pixel, making it difficult to learn how to avoid these phenomena during backpropaga-
tion. In contrast, the discriminator helps detect masks with noise, checkerboard artifacts, and
blurring as fake rather real images because the FCN-Pix2Pix network considers the whole image

aspect. This was the core reason I implemented the semantic segmentation FCN model in GAN

architecture.

§

(d)

Figure 3.5: Example prediction outcomes: (a) RGB and (b) labeled images from the PST900
dataset [12]; (c) FCN predicted mask showing classic checkerboard artifacts; and (d) FCN-
Pix2Pix predicted mask, completely free of checkerboard artifacts

Table 3.1 shows that FCN and FCN-Pix2Pix have superior performance compared with the
other approaches, due to FCN employing VGG16 [19] as the feature extractor. VGG~ s supe-
rior classification capability translated to superior semantic segmentation, which was the reason
that FCN is chosen as the generator for Pix2Pix architecture. Thus, the table 3.1 shows that the
original Pix2Pix [1] network (UNet-Pix2Pix) which used UNet as the generator cannot reach

the same performance as the FCN-Pix2Pix. The discriminator in the GAN architecture (FCN-

12



Pix2Pix) supervises generator outcomes from a global aspect. Thus, the proposed FCN-Pix2Pix
model achieved robust and superior performance compared with all other state-of-the-art se-
mantic segmentation neural networks considered, including FCN. Therefore, GAN architecture

also improves performance over just including the generator.

Dataset: PST900 RGB Dataset
Network Extinguisher | Backpack | Drill | Survivor | mloU
ERFNet 0.6118 0.6528 | 0.4240 | 0.4169 | 0.5263
MAVNet 0.2831 0.5850 | 0.3367 | 0.0901 | 0.3237
UNet 0.4928 0.6364 | 0.4026 | 0.2337 | 0.4413
Fast-SCNN 0.3454 0.6679 | 0.2063 | 0.2053 | 0.3562
PST-SegNet 0.6814 0.6990 | 0.5151 | 0.4989 | 0.5986
FCN 0.6133 0.7768 | 0.5345 | 0.6371 | 0.6404
UNet-Pix2Pix 0.5735 0.6903 | 0.4927 | 0.2599 | 0.5041
FCN-Pix2Pix 0.6036 0.7872 | 0.5638 | 0.6572 | 0.6529

Table 3.1: Performance metrics for the considered networks trained and tested using the PST900
training and testing datasets, respectively. The top five network experiments (ERFNet - PST-
SegNet) on the table are done by [12], and the other three network experiments (FCN - FCN-
Pix2Pix) are done by this work.

13



Chapter 4

Virtual Dataset from Simulation to Real

4.1 Introduction

The NCTU ARG Lab [6] used a real world robot arm pick-and-place dataset to train object
detection [5]. However, data collection was time and human resource expensive, and training
the models with virtual datasets produce poor performance for eventual real application. There-
fore, this work proposes to build a GAN Sim2Real dataset to transform the virtual dataset from
simulation to real.

This section discusses training SSD object detection [3] models using different datasets,
and verifies the GAN Sim2Real dataset provides better performance than the virtual or other

converted datasets.

4.2 Related Work

Several methods have been developed to transform image data from simulation to real with
sufficient quality that the outcomes can be used as real-world data directly, i.e., models trained

on the transformed datasets perform well when applied to actual real world datasets.

4.2.1 Histogram Matching

Traditional image processing approaches create virtual images for training by adding noise or
adjusting image coloring. However, the virtual images are invariably much more “perfect” than
the real images, i.e., the virtual images are less effected by noise, generally exclude blurring or
unbalanced lighting effects, despite the camera is always moving between images, and lighting
conditions change according to different locations and angles. Therefore, adding image blurring

and salt-and-pepper noise can make “perfect” virtual images more imperfect, and more similar

14



to real-world images.

Histogram matching between real and virtual images (histogram specification) is an efficient
and useful approach produce more realistic virtual images [26] [27] [28]. Image histograms
represent the number of pixels for each tonal value in the image, and can describe the image hue
distribution. We can calculate appropriate mapping functions between virtual and real image
histograms, transforming the virtual image into a new image with matching histogram to real
images.

Histogram matching and adding noise attempt to imitate real-world image aspects. How-
ever, these approaches are somewhat limited, and the range and domain they can successfully
transform are insufficient. Therefore, deep neural network developments offer more reasonable

solutions for simulation to real transformation.

4.2.2 Neural Style Transfer

Gatys et al. proposed the neural style transfer method [29], [30], which takes two im-
ages as input, for style and content, respectively. Both images are passed through a CNN (e.g.
VGG19 [19]) for feature extraction. Style and content layers are defined manually by choosing
certain layers from the CNN, and style and content loss are subsequently calculated according to
the selected layers. The training process minimizes both style and content loss, and the network

outputs image combining content and style from the corresponding input images.

4.2.3 Domain Randomization

In contrast with neural style transfer, domain rationalization adapts the input to the target
domain [31], [32]. Object colors and textures are randomized in the simulator to ensure wide
domain randomization dataset distribution, in principle covering the target domain we want to
include.

Domain randomization is mainly used for grasping affordance or structural prediction from
simulation to real. However, this approach is not suitable for this work since image color, pattern,
and texture are all randomized, and these features are key points for object detection. Therefore,

objects cannot be correctly detected and classified in the real world.
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4.3 Method

4.3.1 NCTU-Brandname Dataset

In this work, I take NCTU-Brandname Dataset as the benchmark dataset. It is a 20-category
object image dataset with pixel-wise label masks, the objects are mainly for robot arms pick
and place mission, and all the image data are collected in the real environment and the labeled
masks are labeled manually. The NCTU-Brandname Dataset is divided into training and testing
datasets, each of them contains 25667 and 2851 image data with corresponding labeled masks,

and it was published in [5] by NCTU ARG Lab [6].

4.3.2 Unity Virtual Dataset

The NCTU pick-and-place [5] environment included placing a red tote on a table with var-
ious objects inside in random poses. A camera above the table captured images of the whole
scene. To ensure the virtual dataset is suitable to train systems that are subsequently applied in
the real world, virtual and real environments should as similar as possible. Therefore, I chose
the Unity [33] simulator, because it can not only can create a realistic 3D virtual environment
but can also use an virtual camera to obtain various virtual scene images for a corresponding

labeled image. The followings describe building the Unity virtual dataset:

Create Virtual Environment

First, 3D object models were created in CAD software (3D Builder), with textures imported
from high resolution images of real objects. The resulting 3D virtual object model appeared
quite realistic. A 3D red tote model was then built with similar specification and hue to the
real tote. Real background images were pasted to the Unity background to make the virtual

environment look very similar to the real world.
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Figure 4.1: Data collection procedure for the Unity virtual environment: (left pane) 3D virtual
environment created in Unity; (center pane) (top to bottom) Unity image, Unity box image,
labeled mask.

Create Virtual Dataset

The basic virtual environment included 3D object models, 3D tote model and environment
background, and we then created many different scenes to expand the Unity virtual dataset diver-
sity. Fortunately, Unity enables programming in C# to create different object poses and camera
angles, providing multiple virtual environment scenes. Unity can also automatically generate
labeled images for the corresponding virtual scene image. Figure 4.1 shows the Unity virtual
environment comprised a virtual camera capturing the scene, i.e., generating Unity images, and

the corresponding labeled masks.

4.3.3 Real Tote Dataset

The Real Tote dataset was used as the target real-world domain for the simulation to real
task, to allow training a deep CNN model or perform histogram specification to ensure realistic
virtual images. For this particular case I took images of the actual red tote, which was similar to

that used by NCTU [5], at different angles and distances. The final Red Tote dataset included
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Figure 4.2: Architecture to generate the GAN Sim2Real dataset.

4752 tote images without objects inside Fig. 4.3.

P

Figure 4.3: First row is the data in Real Tote Dataset, and the second row is the Unity box images
in Unity Virtual Dataset.

4.3.4 GAN Sim2real Dataset

I propose an SSIM-CycleGAN method to create the GAN Sim2Real (real) dataset from
the Unity virtual (simulation) dataset, so the new dataset can be used in real world scenarios.
Figure 4.2 shows the underlying architecture included SSIM-Cycle (based on CycleGAN [2]) to
convert the simulation to real dataset. I only trained the SSIM-CycleGAN model to transform

Unity box images rather than Unity images because we need extremely high accuracy labeled
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masks for training. Hence if we convert the whole Unity image dataset to real images, we risk
failing to match labeled masks with the newly generated image, and 3D object models in Unity
itself were created from real images. Section 4.3.6 describes the GAN model architecture and
the training details will also be described in the Sec. 4.3.6.

We first apply bitwise AND to the labeled mask and Unity images to generate object im-
ages that only contain the object itself. Unity box images are then passed through the SSIM-
CycleGAN model to generate realistic looking synthetic box images. Finally, object images are
added to the synthetic box images to create GAN sim2real images comprising GAN Sim2Real

dataset along with the corresponding high accuracy labeled masks.

4.3.5 Histogram Matching Dataset

Object images were generated from the Unity dataset following the same process as for
the GAN Sim2Real dataset. Then one image was randomly chosen from the Real Tote dataset
and the Unity box image modified match histograms with the Real Tote image, generating a
new matching box image. The new object image was added to the new matching box image to
create a matched histogram image, and saved into the Matched Histogram dataset along with

the corresponding labeled mask.

4.3.6 Network Architectures

Figure 4.6 shows that the original CycleGAN [2] approach causes structure distortion. The
only constraint between generator input and output (Fig. 4.5) is the real or fake prediction
from the discriminator, which would lead to generator overfitting. However, although cycle-
consistency loss design can regularize the generator to avoid overfitting [2], if the data in do-
mains A and B are not sufficiently diverse (as in this case), cycle-consistency loss will not pre-
vent this problem. Therefore, I propose the SSIM-CycleGAN approach based on CycleGA [2],
where structural similarity (SSIM) [34] [35] is a quality assessment based on structural informa-

tion degradation. This takes two images as inputs and combines their comparative luminance,
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Histogram

GAN Sim2Real

NCTU-Brandname

Figure 4.4: Example images from (top to bottom) Unity virtual, Matched Histogram, GAN
Sim2Real, and NCTU-Brandname datasets.

contrast, and structure to obtain an SSIM index Eq. 4.1.

SSIM (x,y) = [U(x,y)]*[c(z, y)) s(z, y)]” (4.1)

The SSIM loss in SSIM-CycleGAN calculates structure similarity differences between gen-
erator inputs and outputs, ensuring the generated image preserves the original image structure.
Figure 4.6 shows that using CycleGAN leads to obvious structural distortion; whereas SSIM-
CycleGAN, incorporating the SSIM loss constraint, can avoid structural distortion, producing

more realistic (real-world) images.
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Figure 4.5: Proposed SSIM-CycleGAN network architecture based on CycleGAN [2] with addi-
tional structural similarity (SSIM) loss between generator input and output to avoiding structure
distortion

4.4 [Experiments

4.4.1 Experiment Design

We used the Unity virtual; Matched Histogram; GAN Sim2Real; and NCTU-Brandname
(from NCTU ARG Lab [5] as benchmark) datasets for the experiments. In real-world logistic
robot arm missions, the robot system should automatically detect object category and location,
and then let the robot arm grasp the object. Therefore, the experimental datasets (including
NCTU-Brandname) were trained on the SSD object detection network [3] and evaluated on the

NCTU-Brandname testing dataset.

4.4.2 FEvaluation Metric

I used the mean average precision (mAP) evaluation metric, a popular metric to measuring
object detection accuracy, which computes average precision for recall = [0,1]. I needed the

precision-recall (PR) curve before calculating average precision (AP). The PR curve is the recall
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CycleGAN SSIM-CycleGAN

Figure 4.6: CycleGAN causes structural distortion, making the final image less similar to real
images, however using SSIM-CycleGAn can avoid this problem due to the structure constrain
by the SSIM loss.

and precision for a given loU threshold for different predicted confidence levels,

TP TP
Precision = TP-|-—FP RBCCL” = m—m (42)

where TP = true positive, TN = true negative FP = false positive, FN = false negative; AP

is the area under the PR curve, and mAP as the numeric mean AP for all categories.

4.4.3 Results and Discussions

Table 4.1 shows the SSD model trained with the Unity virtual dataset achieved poor per-
formance, which is only slightly improved by incorporating the Matched Histogram dataset.
However, Training the SSD model with GAN Sim2Real dataset dramatically improved perfor-

mance, with mAP @0.5 IoU increasing from 0.5 to 70.23 compared to using the Unity virtual
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dataset, which strongly verifies the proposed SSIM-CycleGAN model as useful and powerful.
The table also shows that using SSIM-CycleGAN is better than CycleGAN as the GAN archi-
tecture of the GAN Sim2Real Dataset.

Figure 4.4 shows that the SSD model trained with the Unity virtual dataset hardly detects any
objects in the red tote, whereas training with GAN Sim2Real dataset detect included object very
well. Figure 4.7 shows that the PR curve @0.5 loU when trained using the Unity virtual dataset is
oddly shaped, such that we cannot extract meaningful information, i.e., SSD model trained with
Unity virtual dataset predictions are too poor to provide useful detection. In contrast, Fig. 4.8
shows that the PR curve @05 IoU when trained with the GAN Sim2Real dataset confirms low

precision for high recall value and vice versa, which is a much more reasonable PR curve shape.

MAP Unity | Histogram | GAN Sim2Real | = GAN Sim2Real
Virtual | Matching (CycleGAN) | (SSIM-CycleGAN)
@0.3IoU | 2.28 9.35 67.78 71.41
@0.4IoU | 0.86 5.77 67.11 70.90
@0.5IoU | 0.5 3.78 06.35 70.23
@0.6IoU | 0.4 2.66 64.85 68.97

Table 4.1: Performance metrics for SSD [3] on the NCTU-Brandname testing dataset after train-
ing with different transformed simulation to real datasets.

To show the GAN Sim2Real Dataset can really help us in the real world, I take the SSD
model trained with GAN Sim2Real Dataset as the fine-tuned model M. Then I take 500 data
from NCTU-Brandname training dataset, which contains 25667 data originally, to train on M.
Later on, I compare it with the models trained only with 500 training data without any fine-
tuning. Also, I train the whole NCTU-Brandname training dataset, and the result in table 4.2
shows that if we use model M as pre-trained model, we can use a small amount of real data (500
data) to do the fine-tuning, and the result can reach the high performance almost same as using

great amount of real data (25667 data).
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Number of
NCTU-Brandname | 500 data
training data

500 data with 25667 data
Sim2Real pretrained model || (NCTU-Brandname training dataset)

@0.3IoU 60.35 94.75 96.93
@0.4Io0U 60.28 94.61 96.79
@0.5IoU 60.15 94.35 96.58
@0.61oU 59.74 93.92 96.21

Table 4.2: Using small amount of training data (500) to train them on SSD [3] with and without
pre-trained model which is trained with GAN SimReal Dataset. The result shows that using pre-
trained model trained with GAN Sim2Real Dataset can make the performance increase greatly,

and almost have the same performance as using the whole NCTU-Brandname training dataset
(25667 data) to train.
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Figure 4.7: PR curves @0.5IoU for SSD models trained on the Unity virtual dataset
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Figure 4.8: PR curve @0.5IoU for SSD model trained on the GAN Sim2Real dataset
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Figure 4.9: Prediction results for SSD models trained on Unity virtual and GAN Sim2Real
datasets
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Chapter 5

Conclusions and Future Works

I used GAN architectures to solve semantic segmentation and virtual dataset from simulation
to real problems. Experiment results confirm that the proposed GAN based approaches achieved
considerably superior performance than current state-of-the-art approaches.

Single generative models can create labeled mask images, and images with new styles, etc.,
but many drawbacks remain, including blurring, noise, and/or checkerboard artifacts. Extending
the model to include a discriminate to supervise the generative model from a global aspect,
provides considerably improved performance, which is also the main GAN concept.

Two experiments confirmed that the proposed GAN based models were suitable for general
computer vision problems and could be implemented for real-robot missions.

GAN technology has already shown remarkable capability to accomplish tasks even humans
cannot. The current outcomes confirm that GAN technology can have more applications in real-
robot missions, solving real world application problems, and contributing to a more convenient

future.
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